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Аннотация: показано, что В-компьютеры обладают неограниченным потенциалом развития,
реализуемым на уровне разнообразных цифровых устройств, интегрируемых В-компьютером. На ос-
новании этого факта делается вывод о том, что решение задачи создания искусственного интеллекта в
полной мере может быть осуществлено на базе В-компьютеров.
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A Preliminary Informal Explanation
This paper refers to “A-computers” and “B-computers” (the letters “A” and “B” are Latin). By

A-computers we mean computers and related devices such as all kinds of gadgets. In conjunction with
A-computers are B-computers. The A-computers have a historical priority, they are primary, which is
emphasized by the use of the letter “A” in their name. Concerning them, B-computers are secondary, which
is also shaded by the use of the letter “B” in their name. A-computers and B-computers unite and at
the same time contrast related principles of abstract schemes construction. Principle A, which serves to
build A-computer circuits, states: different information signals can be transmitted over the same line. But,
understandably, too many different information signals cannot be transmitted over the same row, because in
this case there is a difficult problem of distinguishing signals, leading to unreliable calculations. This was
the reason for J. von Neumann to formulate the thesis that the best system of notation suitable for computers
is binary notation. And indeed in this case the calculations are as reliable as possible. The whole computer
industry has been binary ever since. A-computer computing, while being as reliable as possible in the binary
number system, is nevertheless not free from failures.

Principle A is contrasted with its dual principle B, which states that different information signals
cannot be transmitted along the same row. As we can see, both principles, being the antithesis of each other,
complement one another so that there is no third. Thus, under Principle B, there is a one-to-one mapping
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between the row and the information signal, and there is never any confusion of signals in the row. This
ensures the reliability of calculations for any number of signals. Therefore Neumann’s thesis does not apply
to B-computers. Consequently, B-computers can be created for any number system without experiencing
any difficulties in principle. One of the features of B-computers is the simplicity of the basis on which both
B-computers themselves and the B-devices contained in them can be built. This structural basis consists of
two elements: the row, which transmits information signals, and the element &, which controls the direction
of the information signal. The basis can be represented by the notation: { | , & }; this set of structural
elements satisfies the principle of maximum simplicity. Consequently, B-circuits of B-computers are as
simple as possible in their design.

Every object is at some stage of development. The stage of development of an object is understood
as its constructive state, as well as a set of functional interactions of the object with the environment, which
we will call a set of functions of the object. By development, we mean the transition of an object from
one stage of development to another. This implies both a possible constructive change of the object itself
and a change in the set of functions associated with it. In connection with the concept of development,
it is immediately necessary to characterize this development, whether the development will be regressive
or progressive. As stated above, each stage of development is characterized by two components: the
structural features of the object and its function set. It is quite natural to assume that the functional set
of an object depends on its construction so that the set of functions characterizing a stage of development
is a kind of function of its constructive perfection, which is reflected by the notation {f1,f2, . . . } = Ψ(k),
where k is the coefficient characterizing constructive development. Let us assume that it varies within the
limits 0 ≤ k < ∞ (there is no limit to perfection). Thus the stage of development of an object is a pair
⟨k,{f1,f2, . . . }⟩ , consisting of the coefficient of constructive development k and a set of functions {f1,f2, . . . }.
This is a peculiar vector of development. Let us not, however, further deepen the vector analogy. Both
regression and progress are characterized by the behavior of the pair ⟨k,{f1,f2, . . . }⟩. Both factors included
in this pair may be determined by external influence, in which case we speak of induced development. But
it may also be the case that the behavior of the pair ⟨k,{f1,f2, . . . }⟩ is determined by internal causes inherent
in the object, with little or no external influence. Then we speak about self-development.

Closely related to the concept of self-development is the concept of artificial intelligence (AI), so
popular recently. Artificial intelligence is understood as an artificially created object, which has the ability
to independent intellectual activity. Thus, the first distinguishing feature of artificial intelligence is its
artificial origin, i.e. it must be created by someone else capable of creative activity, such as a human creator
or some other thinking being (MC) capable of creating creations. For this reason, a fly is not artificial
intelligence, even though it shows signs of intelligence. It is not for the reason that neither man nor any
other MS is its creator. On the other hand, a car that rolls around on the floor and is controlled by a
boy with levers on a remote control is also not an AI, despite the apparent intelligence of its behavior. Its
apparent intelligence is the result of the boy’s intelligence, not the machine itself. Similarly, the famous
Japanese robots are not examples of AI, because although they are artificially created, they do not have
an intelligence of their own; they behave by obeying orders from computers embedded in them, which in
turn contain programs written by humans. These programs determine the robots’ behavior. Ultimately, the
robot’s behavior is determined by humans, just as in the case of a machine. All robots are controlled by
A-computers, an attribute of which are programs created by humans. Therefore, the behavior of robots is
entirely dependent on humans. Consequently, as long as they are controlled by A-computers, no “machine
revolt” is possible. Simply because these machines have no intelligence of their own.

B-computers are another matter. B-computers have unlimited development potential. The presence
of developmental potential allows the possibility of self-development and, eventually, its transformation into
intelligence. This potential can be used by humans for their purposes, or it can be used by the computer
itself for its development. By acquiring intelligence, the B-computer can enter into a competitive intellectual
game with humans and even win it. Not necessarily, however, it must end in “war”, a friendly symbiosis of
man and machine is quite possible.

Synthesis of Fully Defined Devices on Blank Templates

Blanks are abstract boards on which semi-finished products for future device circuits are prepared
in advance. The blanks meet the requirement of maximum simplicity. On the blanks, there are rows for
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transmitting information signals, as well as many elements &. There is nothing else. If all rows in the
template are parallel, then in such a template it is not possible to vary the links. Variation of links is only
possible in a billet where there are intersecting rows. If there are intersecting rows, then their connection,
although possible, is not necessary. The presence of a connection will be represented by a bold dot in the
crosshair, as shown in Fig. 1.

Figure 1. No connection (left), connection (right)

Thus, in abstract B-schemes, the connection operation is reduced to the simplest operation – a point.

Figure 2. An example of the connection option

Figure 2 shows one possible way of connecting the five crossed rows. There are a total of 26 possible
variants. This number evaluates the development potential (potential of possibilities) of this configuration
of rows.

On the next page is an example of a typical template. On the left is a “raw” template with no
connections; on the right is the same template, but with one of the possible connections selected. There
are unimaginably many connection options (2728), and each connection option corresponds to a different
computing device. Not all of them are of any interest at the moment, but some certainly are. Such is the
device resulting from the shown connection variants. This device is nothing other than a multiplier by three
in the quadratic number system. They are denoted as: x̄ · 3|q̄, where x̄ is the numberid written on the grid
Gr0 = . . . 2 1 0 representing, in particular, natural numbers; q̄ is the state of the multiplier q̄ ∈ {0,1,2}. As
you can see, after selecting a connection option, “extra” rows may remain on the template. Not playing
any role concerning the chosen connection variant, they can carry new information signals and be useful
for other purposes. The number 2728 expresses the “hidden” potential for development, the potential for
opportunities associated with this type of template. If we consider that there can also be unimaginably many
types of blanks, we can imagine what is the potential for development associated with B-computers. The
symbolic attributes present in Fig. 3, is necessary for us to understand the functioning of the device. The
device itself, at its current stage of development, does not need it. Among the many modes of operation of
the device, there are modes meaningful from our point of view. Therefore, it makes sense to equip some
elements of the circuit with informational signals that we understand. Thus, symbols 0, 1, 2, 3 are provided
with some rows of the device. Groups of four rows form input and output devices, groups of three rows -
control signals. The group of elements & , with 0 on the first (left) place, forms the state q̄ = 0; similarly,
the states q̄ = 1 and q̄ = 2.

The state q̄ = 0 will be called the initial state. The device performs multiplication by three by being
put into the initial state t = 0. If it is put in other states for t = 0, it calculates other functions.

Let’s look at an example of calculation with this device.
Example 1. Let us assume that x̄ = . . . 00322 is in the quadratic number system. We follow the

computation using the time sweep of the computation process.
The information in the sweep is read from right to left. In the same way, the numbers of the digits in the
numeric digits grow from right to left. The first row shows the moments in which the device functions.
These moments are non-negative integers. In the second row are the digits of the number applied to the
input. In the bit 0 corresponding to the moment of t = 0, there is a digit x0 = 2. Similarly, in all other
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Figure 3. Template without connections (left) and template with connections (right)

6 5 4 3 2 1 0 t

. . . 0 0 0 3 2 2 xt

&00 &00 &00 &20 &13 &12 &02 &qxt

. . . 0 0 2 2 3 2 yt

bits. In the row, &qxt there are elements of &, which are triggered at time t. The row yt contains bitwise
added digits of the result, and the correspondence between the moment t and the digit number is preserved,
just as for the input. Note that the device is an abstraction, i.e., an ideal object in which everything is
perfectly actuated, all elements & have the same delay; the output signal is output at the same time moment
as the incoming input. In reality, the output signal is always output with some delay relative to the input
signal. But computational engineers always try to reduce this delay as much as possible. Mathematicians
take this process down, reducing the lag to zero. Clearly, this is an idealization, but it does not spoil the
mathematical content of the computational process, rather it represents it.

The design of the device alone is not enough to make the principle of its operation clear. It is
required to give the law of functioning of the device, which is provided by its functioning equations. They
have the form: {︂

q̄t+1 = θq̄txt = ⟩3 · xt+q̄t⟨ ,
yt = σq̄txt = ⟨3 · x+ .̄q⟩ ,

(1)

where q̄ ∈ Q3 = {0, 1, 2} , x,y ∈ Z(4) = {0, 1, 2, 3} θ is the function of transitions, σ
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is the function of outputs. In (1) we use the notations: ⟨ᾱ⟩ = ⟨. . . 00αr. . .α1α0⟩ = α0 and
⟩ᾱ⟨ = ⟩ . . . 00αr. . .α1α0⟨ = . . . 00αr. . .α1.

Read the sweep: for t = 0 the device is in the initial state q̄ = 0, which is provided by the arrival
of the control signal on row-0 of input-C. All four elements & of the initial state are ready to be triggered:
&00, &01, &02,&03. But only one of them will actuate, namely, the one which corresponds to the digit
received at the input, which is the digit x0 = 2. That is why the element &02, which is marked in the sweep,
is triggered. According to the device diagram, digit 2 appears on the output, and the control signal for the
moment t = 1 is transmitted to elements & state 1, i.e. to the elements &10, &11, &12, &13. At the same
moment, the digit x1 = 2 is at the input; then it goes similarly to t = 0. As a result, the output will form
the result, the number ȳ = . . . 002232.

Let us write down the result of the device in the form: . . . 00322 · 3|0 = . . . 002232.
Read: if we put the device in the initial state q̄ = 0 (marked by zero to the right of the vertical

row) and input the number x̄ = . . . 00322, then the device will output the result ȳ = . . . 2232, which is the
product of the number x̄ = . . . 00322 by three: . . . 00322 ·3 = . . . 2232. The result is checked by the school
multiplication “column” (in the quadratic notation system).

Note that the result is output at t = 2, i.e., in 3 (not 4) clock cycles. This is explained by the fact
that the highest two digits of the result are output by the device at the same time. This phenomenon is
generalized when considering all B-devices, which leads to the conclusion that in B-devices the computation
ends at the moment when the highest digit comes from the input. This is only true for B-devices. Similarly,
we can parse the operation of any of the devices 2728 that can be created on the template pattern shown in
Fig. 3. If we take into account that there are unimaginably many templates like the above and other much
more complex ones, then, again, it is clear how great the potential for B-devices development is.

In the example above it was assumed that the mapping realized by the device is fully specified,
i.e. either the equations of functioning of the device (1), or its table specification (was not given), or its
B-scheme (was not given) are known. It was required to obtain its template B-scheme by making the
necessary connections.

This is not the case in the next section, where the mapping is set in fragments.

Synthesis of devices from fragments of mappings
We will not describe the algorithm for the synthesis of abstract computational devices (ACD) by

fragments of mappings, but only give an example of the result of its work. Hereinafter, instead of “synthesis
algorithm” we will simply say “algorithm”.

Let us denote pAq by the symbol an abstract computational device (ACD) with anticipation for p
steps and with a consequence of q steps, i.e. a device whose functioning is described by equations:{︂

q̄t+1 = θq̄txt+p . . . xt+1xtxt−1. . .xt−q ,
yt = σq̄txt+p . . . xt+1xtxt−1. . .xt−q ,

(t ∈ Z = {. . . 2.1.0, − 1, − 2, . . . }) (2)

where x ∈ Zk = {0,1, . . . ,k − 1}, y ∈ Zl = {0,1, . . . ,l − 1} are the sets of digits in the k and l number
systems, respectively; k,l ≥ 2, natural numbers; p,q ≥ 0. We denote by the symbol p𝒜q the set of all ACDs
with p step anticipation and a qstep consequence: p𝒜q = {pAq}. The set of all ACDs is the set 𝒜=

⋃︀
p

⋃︀
q

p𝒜q.

Abstract automata form the set 0𝒜0.
A mapping fragment is the set of mappings of the type x̄ → ȳ, where x̄ is taken from the mapping

definition domain and ȳ is taken from the value domain. The number of mappings in the fragment can be
any, except zero.

A mapping fragment is called representative if it allows the mapping to be found completely.

Let the numerical object x̄ = 1300122203 1
0

expressed in the quaternary notation. It means all its

digits belong to the set of digits Z(4) = {0,1,2,3}. The digit numbers grow from right to left, starting from
the zero digit marked with a zero from below. Let, similarly, an object ȳ = 4403212103 4

0
be expressed in

the pentatonic notation, Z(5) = {0,1,2,3,4} and let the mapping be such that there a mapping between the
objects x̄ and ȳ which we will write on the digit grid:
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10 9 8 7 6 5 4 3 2 1 0 t

1 3 0 0 1 2 2 2 0 3 1 xt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

4 4 0 3 2 1 2 1 0 3 4 yt

(3)

The question is: whether there are ACDs from the class p𝒜q, (p,q ≥ 0) that implement the mapping
of numerical objects x̄ → ȳ?

The algorithm starts searching for an ACD from the class 0𝒜0, i.e., first, it asks whether there exists
an abstract automaton that implements the given mapping (recall that abstract automata fill the class 0𝒜0)
in the set of all ACDs.

Applying the algorithm, it turns out that there are two minimal automata A1 and A2 with two states,
for which the mapping (3) takes place. These automata are defined by tables:

A1:
q

x
0 1

0 0, 0 0, 3

1 1, 4 1, 2

2 1, 1 0, 2

3 0, 4 0, 3

A2:
q

x
0 1

0 1, 3 0, 0

1 1, 4 0, 2

2 1, 1 0, 2

3 0, 4 1, 3

(4)

In the tables x ∈ Z(4) = {0,1,2,3}, q is the state of the automaton, q̄ ∈ Q = {0, 1} , Q is the set of
states of the automaton. At the intersection of row-x and column-q there is a pair (θ,σ), where θ = θ(q,x) is
the value of the transition function on the pair (q,x), and σ = σ(q,x) is the value of the output function on
the pair (q,x).

Thus, according to the algorithm, there are two automata mappings 1 and 2, realized, respectively,
by automata A1 and A2, for each of which the given correspondence takes place x̄ → ȳ.

Let us check that this is true. Pass the object x̄ through automata A1 and A2 and make sure that in
both cases the output is represented ȳ. Let us plot the time sweeps of the automata calculations as x̄ passes
through them.

Through A1:

11 10 9 8 7 6 5 4 3 2 1 0 t

1 3 0 0 1 2 2 2 0 3 1 xt

1 0 0 0 1 1 0 1 0 0 1 0 qt

4 4 0 3 2 1 2 1 0 3 4 yt

(5)

Through A2:

11 10 9 8 7 6 5 4 3 2 1 0 t

1 3 0 0 1 2 2 2 0 3 1 xt

1 0 0 1 0 1 0 1 0 1 1 0 qt

4 4 0 3 2 1 2 1 0 3 4 yt

(6)

The symbol t denotes the automaton time and simultaneously for rows xt and yt the digit number;
the initial state of the automata in both cases is q = 0.

The results of automata are read in the lower rows of sweeps (5) and (6), in both cases they coincide
and are equal to the object ȳ, as they should be.
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The fact that the algorithm singled out two automata A1 and A2 in the class 0𝒜0 means that the
information contained in the mapping fragment x̄ → ȳ is insufficient for the unambiguous selection of the
automaton. To uniquely find an automaton in the class 0𝒜0, we add a mapping x̄ → ȳ in the 11th digit and
pass to a new mapping:

11 10 9 8 7 6 5 4 3 2 1 0 t

0 1 3 0 0 1 2 2 2 0 3 1 xt

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

3 4 4 0 3 2 1 2 1 0 3 4 yt

(7)

Let us pass the object x̄1 = 01300122203 1
0

through the automata A1 and A2 and see what we get

on their outputs. When passing x̄1 through A1, the sweep (5) will be completed only by the 12th step:

12 11 10 . . . . . . 1 0 t

0 1 3 1 xt

0 1 0 1 0 qt

3 4 3 4 yt

(8)

As can be seen, in step 11, in full accordance with (7), the result is y = 3, i.e., the automaton A1

implements the mapping x̄1 → ȳ1, where ȳ1 = 34403212103 4
0
.

As x̄1 passes through A2 we will have the same thing:

12 11 10 . . . . . . 1 0 t

0 1 3 1 xt

0 1 0 1 0 qt

0 4 4 4 yt

(9)

But this time for t = 11 the automaton A2 generates a signal y
′

11 = 0 different from the required
number 3:

x̄1
A2−→ ȳ′1 ̸= ȳ1 (10)

The chart (10) states that automaton A2 does not implement the mapping x̄1 → ȳ1 and thus there is only
one automaton, A1 (Fig. 4), which implements the mapping x̄1 → ȳ1, and thus, assuming that the mapping
x̄1 → ȳ1 is representative, there is only one automaton mapping ƒ1, for which x̄1 → ȳ1. Thus by a single
mapping one can find the whole automaton mapping.

If at t=11 we required, say, a mapping of digits:
0
↓
1

, or
0
↓
2

, or
0
↓
4

(as well as some more), we

would not find any automaton implementing a mapping x̄ → ȳ with the specified mappings in the 11th bit.
In that case, the algorithm would go on to the search of the ACDs in the classes 1𝒜0, 0𝒜1, etc.

The fact of constructing the automata A1 by mapping x̄1 → ȳ1 can be interpreted as a learning
process, with which the synthesis of A1 by mapping x̄1 → ȳ1 bears a great resemblance.

Indeed, in the brain of a schoolboy when teaching him, say, the operation of addition, after he has
performed a finite number of examples, something is formed that allows him to further solve any example
on the performance of the operation of addition.

Here we have an analogy. The external constructor, which contains the algorithm for synthesizing
from fragments of mappings, passes a finite number of correspondences (in the example we have consid-
ered one: x̄1 → ȳ1), and as a result forms a structure (automaton A1), which allows finding any other
correspondence of automaton mapping f1.
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Of course, we are not claiming that the same thing happens in the brain; we are merely emphasizing
an analogy. Moreover, we will not seek to model nature, not only out of ignorance of how it does it but also
because the quantitative effect in achieving the same goal is most often achieved by paths different from
those followed by nature.

Figure 4. The canonical B-scheme of automata A1 (left) and its duplicate (right), made on the template

A total of 2234 various connection options are possible on this type of template. One of them is
shown.

The effect of reducing the role of programs in B-computers
Consider a typical fragment of a program code executed on an A-computer (see Fig. 5). The

program contains blocks in which functions are calculated. The calculation is performed programmatically.
After completing calculations in a block, control is transferred to the next block, in which the same happens.
Note that each block calculation takes place programmatically.

Figure 5. The linear part of the A-computer program

Let us compare this situation with a similar one in the B-computer. Let’s picture the same part of the
program, but done by a B-computer. The difference is that calculation in blocks is not done programmatically,
but with the help of devices.

Let us immediately note that this part of the program will be executed by the B-computer faster
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Figure 6. The same linear part of the program, but executed by the B-computer

than by the A-computer since the computation of the function by the device is faster than the program
computation. But let us not only look at this fact but also at the fact that a large part of the program
component has disappeared. This is exactly what we have called the diminishing role of programs in
B-computers. In the long term, we can talk about almost completely leveling out the role of programs in
B-computers. And what will remain? There will remain the part of programs which is connected with
management functions, which is marked in the figures as “management transfer”. But this, too, can be
implemented in the future by hardware, using devices.

Conclusion
The above brief analysis quite convincingly shows that B-computers can increase their “iron mass”

unlimitedly, but not at the expense of single-type boxes piled up within a certain volume, but at the expense
of synthesis of various computing devices and their subsequent integration into the computer. The variety of
computing devices integrated into the B-computer indicates the “sophistication” of the B-computer, its ability
to solve various and complex computational problems. These examples show that synthesis of computing
devices embedded into B-computer can be performed by the computer itself inside itself, as it comes down
to putting points on templates of blanks – the simplest of all possible operations. The solution to the problem
of creating artificial intelligence can be obtained by using B-computers since it is B-computers that make
it possible to get rid of the influence of the human factor, which manifests itself through programs, whose
influence in B-computers tends to level out.
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