Аннотация
рассмотрена спиновая система на полносвязном графе, состоящая из двух взаимодействующих подансамблей: cпины, принадлежащие одну и тому же подансамблю, взаимодействуют ферромагнитным образом, а перекрестное взаимодействие между спинами разных подансамблей – антиферромагнитное. Введено условие сбалансированности системы, означающее, что число ближайших соседей для спина первого подансабля равно числу ближайших соседей у спина во втором подансамбле. Показано, что критические показатели и функция скейлинга сбалансированной системы кардинально отличаются от классических, присущих несбалансированной системе. Полученные результаты подтверждаются Монте-Карло симуляцией трехмерной слоистой спиновой модели, проведенной для сбалансированной и несбалансированной систем.
Литература
Ilkovič V. Magnetic Properties of Ising-Type Ferromagnetic Films with a Sandwich Structure. Physica Status Solidi (b). 1998;207(1):131–137.
Kuzniak-Glanowska E., Konieczny P., Pełka R., Muzioł T. M., Kozieł M., Podgajny R. Engineering of the XY Magnetic Layered System with Adeninium Cations: Monocrystalline Angle-Resolved Studies of Nonlinear Magnetic Susceptibility. Inorganic Chemistry. 2021;60(14):10186–10198.
Grünberg P. Layered Magnetic Structures in Research and Application. Acta Materialia. 2000;48(1):239–251.
Taborelli M. et al. Magnetic Coupling of Surface Adlayers: Gd on Fe (100). Physical Review Letters. 1986;56(26):2869.
Camley R. E., Tilley D. R. Phase Transitions in Magnetic Superlattices. Physical Review B. 1988;37(7):3413.
Camley R. E. Properties of Magnetic Superlattices with Antiferromagnetic Interfacial Coupling: Magnetization, Susceptibility, and Compensation Points. Physical Review B. 1989;39(16):12316.
Lipowski A. Critical Temperature in the Two-Layered Ising Model. Physica A: Statistical Mechanics andits Applications. 1998;250(1–4):373–383.
Horiguchi T., Lipowski A., Tsushima N. Spin-32 Ising Model and Two-Layer Ising Model. Physica A:Statistical Mechanics and its Applications. 1996;224(3–4):626–638.
Diaz I. J. L., Branco N. S. Monte Carlo Simulations of an Ising Bilayer with Non-Equivalent Planes.Physica A: Statistical Mechanics and its Applications.2017;468:158–170.
Diaz I. J. L., Branco N. S. Monte Carlo Study of an Anisotropic Ising Multilayer with Antiferromagnetic Interlayer Couplings. Physica A: Statistical Mechanics and its Applications. 2018;490:904–917.
Gharaibeh M. et al. Compensation and Critical Behavior of Ising Mixed Spin (1-1/2-1) Three Layers System of Cubic Structure. Physica A: Statistical Mechanics and its Applications. 2020;550:124–147.
Drovosekov A. B., Kholin D. I., Kreinies N. M. Magnetic Properties of Layered Ferrimagnetic Structures Based on Gd and Transition 3d Metals. Journal of Experimental and Theoretical Physics. 2020;131:149–159.
Telford E. J. et al. Layered Antiferromagnetism Induces Large Negative Magnetoresistance in the vander Waals Semiconductor CrSBr. Advanced Materials. 2020;32(37):2003240.
Wang Y. et al. Topological Semimetal State and Field-Induced Fermi Surface Reconstruction in the Antiferromagnetic Monopnictide NdSb. Physical Review B. 2018;97(11):115133.
Hansen P. L. et al. Two Coupled Ising Planes: Phase Diagram and Interplanar Force.Journal of statisticalphysics. 1993;73:723–749.
Ferrenberg A. M., Landau D. P. Monte Carlo Study of Phase Transitions in Ferromagnetic Bilayers. Journal of applied physics. 1991;70(10):6215–6217.
Baxter R. J.Exactly Solved Models in Statistical Mechanics. London; Academic Press; 1982.
Крыжановский Б. В., Литинский Л. Б. Обобщенное уравнение Брегга–Вильямса для систем с произвольным дальнодействием. Доклады АН. 2014;459(6):680–684.
Binder K. Finite Size Scaling Analysis of Ising Model Block Distribution Functions. Zeitschrift für PhysikB Condensed Matter. 1981;43:119–140.