Cauchy Problem Solvability with the Data Specified on the Rectangle Boundary for a One-Dimensional Parabolic Equation
PDF (Russian)

Keywords

inverse problem
Cauchy data
initial boundary problem
existence
heat and mass transfer

How to Cite

1.
Pyatkov S.G. Cauchy Problem Solvability with the Data Specified on the Rectangle Boundary for a One-Dimensional Parabolic Equation // Russian Journal of Cybernetics. 2022. Vol. 3, № 2. P. 40-46. DOI: 10.51790/2712-9942-2022-3-2-6.

Abstract

We consider a one-dimensional parabolic equation in the (0,T) × (a,b) rectangle. The Cauchy data are specified on one of its lateral sides. The Cauchy condition is also specified at the initial moment. The solution to this problem is sought in the Sobolev space. A data class was constructed for which there is a unique solution to the Cauchy problem with the Cauchy data specified on the lateral side of the rectangle. The class is minimal, i. e., the smoothness conditions applied to the data cannot be weakened. They are necessary and sufficient for the existence of solutions in a given Sobolev class. The solution is regular which means that all derivatives in the equation belong to L2 space. The problem is ill-posed in the Hadamard sense. Mathematical models of this type arise when describing heat and mass transfer. There are many papers on such problems for both one-dimensional and multidimensional cases. The available sources mostly focus on numerical solutions, since the problem is found in many applications. Besides, there are uniqueness theorems and stability estimates, and existence theorems for solutions in Holmgren’s classes. We slightly refined the recent results and obtained an existence theorem for solutions in finite smoothness classes.

 
https://doi.org/10.51790/2712-9942-2022-3-2-6
PDF (Russian)

References

Алифанов О. М. Обратные задачи теплообмена. М.: Машиностроение; 1988.

Klibanov M. V., Li J. Inverse Problems and Carleman Estimates. Berlin/Boston: Walter de Gruyter GmbH; 2021.

Kabanikhin S. I. Inverse and Ill-Posed Problems. Berlin/Boston: Walter de Gruyter GmbH; 2012.

Самарский А. А., Вабищевич П. Н. Численные методы решения обратных задач математической физики. Изд. 3-е. М.: Издательство ЛКИ; 2009.

Tabarintseva E. V. Estimating the Accuracy of a Method of Auxiliary Boundary Conditions in Solving an Inverse Boundary Value Problem for a Nonlinear Equation. Numerical Analysis and Applications. 2018;11:236–255.

Табаринцева Е. В., Менихес Л. Д., Дрозин А. Д. О решении граничной обратной задачи для параболического уравнения методом квазиобращения. Вестник Южно-Уральского государственного университета. Серия: Математика. Механика. Физика. 2012;11:8–13.

Табаринцева Е. В. Об оценке точности метода вспомогательных граничных условий при решении граничной обратной задачи для нелинейного уравнения. Сибирский журнал вычислительной математики. 2018;21(3):293–303.

Hao D. N., Schneiders A., Reinhardt H.-J. Regularization of a Non-Characteristic Cauchy Problem for a Parabolic Equation. Inverse Problems. 1999;11(6):1247.

Hao D. N., Reinhardt H. J. Recent Contributions to Linear Inverse Heat Conduction Problems. J. Inv. Ill-Posed Problems. 1996;4:23–32.

Jonas P., Louis A. K. Approximate Inverse for a One-Dimensional Inverse Heat Conduction Problem. Inverse Problems. 2000;16:175–185.

Chapko R., Johansson B. T. A Boundary Integral Equation Method for Numerical Solution of Parabolic and Hyperbolic Cauchy Problems. Applied Numerical Mathematics. 2018;129:104–119.

Ладыженская О. А., Солонников В. А., Уральцева Н. Н. Линейные и квазилинейные уравнения параболического типа. М.: Наука; 1967.

Triebel H. Interpolation Theory. Function Spaces. Differential Operators. Berlin: VEB Deutscher Verlag der Wissenschaften; 1978.

Агранович М. С., Вишик М. И. Эллиптические задачи с параметром и параболические задачи общего вида. УМН. 1964;19:53–161.

Неустроева Л. В., Пятков С. Г. О некоторых классах обратных задач об определении функции источников. Математические заметки СВФУ. 2020;27(1):21–40.

Наймарк М. А. Линейные дифференциальные операторы. М.: Наука; 1969.

Denk R., Hieber M., Prüss J. R-Boundedness, Fourier Multipliers and Problems of Elliptic and Parabolic Type. Mem. Amer. Math. Soc.; 2003;166.

Arendt W., Batty C. J. K., Neubrander F., Hieber M. Vector-Valued Laplace Transforms and Cauchy Problems. Berlin: Springer Basel AG; 2011.

Fernandez F. J. Unique Continuation for Parabolic Operators. II, Communications in Partial Differential Equations. 2003;28(9-10):1597–1604.

Downloads

Download data is not yet available.