Discretization Scheme of the Induction Equation on a Staggered Gridin Orthogonal Curvilinear Coordinates
PDF (Russian)

Keywords

induction equation
discrete analog
numerical method
magnetohydrodynamics

How to Cite

1.
Bychin I.V., Gorelikov A.V., Ryakhovsky A.V. Discretization Scheme of the Induction Equation on a Staggered Gridin Orthogonal Curvilinear Coordinates // Russian Journal of Cybernetics. 2022. Vol. 3, № 2. P. 60-73. DOI: 10.51790/2712-9942-2022-3-2-8.

Abstract

A discretization scheme of the magnetic field induction equation is considered for the model of nonideal magnetic hydrodynamics within the framework of the control volume method. A constrained transfer algorithm is used to discretize the induction equation, which provides a solenoidal numerical solution. A detailed elaboration of the discrete analog of the induction equation in arbitrary orthogonal curvilinear coordinates for staggered structured computational grids is presented. The convective flows in the induction equation are approximated with the counterflow scheme using quadratic interpolation and the deferred correction method.

 
https://doi.org/10.51790/2712-9942-2022-3-2-8
PDF (Russian)

References

Glatzmaier G. A., Roberts P. H. A Three-Dimensional Self-Consistent Computer Simulation of a Geomagnetic Field Reversal. Nature. 1995;377:203–209. DOI: 10.1038/377203a0.

Christensen U. R., Aubert J., Cardin P., Dormy E., Gibbons S., Glatzmaier G. A., Grote E., Honkura Y., Jones C., Kono M., Matsushima M., Sakuraba A., Takahashi F., Tilgner A., Wicht J., Zhang K. A Numerical Dynamo Benchmark. Physics of the Earth and Planetary Interiors. 2001;128:25–34. DOI: 10.1016/S0031-9201(01)00275-8.

Jackson A., Sheyko A., Marti P., Tilgner A., Cebron D., Vantieghem S., Simitev R., Busse F., Zhan X., Schubert G., Takehiro S., Sasaki Y., Hayashi Y.-Y., Ribeiro A., Nore C., Guermond J.-L. A Spherical Shell Numerical Dynamo Benchmark with Pseudo-Vacuum Magnetic Boundary Conditions. Geophysical Journal International. 2014;196(2):712–723. DOI: 10.1093/gji/ggt425.

Matsui H., Heien E., Aubert J., Aurnou J. M., Avery M., Brown B., Buffett B. A., Busse F., Christensen U. R., Davies C. J., Featherstone N., Gastine T., Glatzmaier G. A., Gubbins D., Guermond J.-L., Hayashi Y.-Y., Hollerbach R., Hwang L. J., Jackson A., Jones C. A., Jiang W., Kellogg L. H., Kuang W., Landeau M., Marti P., Olson P., Ribeiro A., Sasaki Y., Schaeffer N., Simitev R. D., Sheyko A., Silva L., Stanley S., Takahashi F., Takehiro S.-I., Wicht J., Willis A. P. Performance Benchmarks for a Next Generation Numerical Dynamo Model. Geochem. Geophys. Geosyst. 2016;17(5):1586–1607. DOI: 10.1002/2015GC006159.

Reshetnyak M. Yu. Simulation in Geodynamo. Saarbrucken: Lambert Academic Publ.; 2013. 180 p.

Olson P. L., Glatzmaier G. A., Coe R. S. Complex Polarity Reversals in a Geodynamo Model. Earth Planet. Sci. Lett. 2011;304:168–179. DOI: 10.1016/j.epsl.2011.01.031.

Olson P., Driscoll P., Amit H. Dipole Collapse and Reversal Precursors in a Numerical Dynamo. Phys. Earth. Planet. Inter. 2009;173:121–140. DOI: 10.1016/j.pepi.2008.11.010.

Jones C. A. Convection-Driven Geodynamo Models. Phil. Trans. R. Soc. Lond. A. 2000;358:873–897. DOI: 10.1098/rsta.2000.0565.

Vantieghem S., Sheyko A., Jackson A. Applications of a Finite-Volume Algorithm for Incompressible MHD Problems. Geophysical Journal International. 2016;204(2):1376–1395. DOI: 10.1093/gji/ggv527.

Matsui H., Okuda H. Development of a Simulation Code for MHD Dynamo Processes Using the GeoFEM Platform. Int. J. Comput. Fluid Dyn. 2004;18(4):323–332. DOI: 10.1080/1061856031000154784.

Куликовский А. Г., Погорелов Н. В., Семенов А. Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: ФИЗМАТЛИТ; 2001. 608 с.

Бетелин В. Б., Галкин В. А., Гореликов А. В. Алгоритм типа предиктор-корректор для численного решения уравнения индукции в задачах магнитной гидродинамики вязкой несжимаемой жидкости. Доклады Академии наук. 2015;464(5):525–528. DOI: 10.7868/S0869565215290034.

Toth G. The Div b=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes. J. Comput. Phys. 2000;161:605–652. DOI: 10.1006/jcph.2000.6519.

Harder H., Hansen U. A Finite-Volume Solution Method for Thermal Convection and Dynamo Problems in Spherical Shells. Geophysical Journal International. 2005;161(2):522–532. DOI: 10.1111/j.1365-246X.2005.02560.x.

Chan K. H., Zhang K., Li L., Liao X. A New Generation of Convection-Driven Spherical Dynamos Using EBE Finite Element Method. Phys. Earth Planet. Int. 2007;163(14):251–265. DOI: 10.1016/j.pepi.2007.04.017.

Guermond J.-L., Laguerre R., Léorat J., Nore C. An Interior Penalty Galerkin Method for the MHD Equations in Heterogeneous Domains. J. Comput. Phys. 2007;221(1):349–369. DOI: 10.1016/j.jcp.2006.06.045.

Powell K. G., Roe P. L., Linde T. J., Gombosi T. I., De Zeeuw D. L. A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics. Journal of Computational Physics. 1999;154(2):284–309. DOI: 10.1006/jcph.1999.6299.

Iskakov A. B., Descombes S., Dormy E. An Integro-Differential Formulation for Magnetic Induction in Bounded Domains: Boundary Element-Finite Volume Method. J. Comput. Phys. 2004;197(2):540–554. DOI: 10.1016/j.jcp.2003.12.008.

Teyssier R., Commercon B. Numerical Methods for Simulating Star Formation. Frontiers in Astronomy and Space Sciences. 2019;6:1–35. DOI: 10.3389/fspas.2019.00051.

Бычин И. В., Гореликов А. В., Ряховский А. В. Исследование установившихся режимов естественной конвекции во вращающемся сферическом слое. Вопросы атомной науки и техники. Сер. Математическое моделирование физических процессов. 2016;1:48–59.

Бычин И. В., Гореликов А. В., Ряховский А. В. Численное решение начально-краевой задачи с вакуумными граничными условиями для уравнения индукции магнитного поля в шаре. Вестн Том. гос. ун-та. Математика и механика. 2020;64:15–30. DOI: 10.17223/19988621/64/2.

Patankar S. Numerical Heat Transfer and Fluid Flow. Washington DC: Hemisphere Publishing; 1980. 197 p.

Versteeg H. K., Malalasekera W. An Introduction to Computational Fluid Dynamics. Harlow: Pearson Education Limited; 2007. 503 p.

Куликовский А. Г., Любимов Г. А. Магнитная гидродинамика. М.: Логос; 2011. 324 с.

Leonard B. P. A Stable and Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation. Computer Methods in Applied Mechanics and Engineering. 1979;19(1):59–98. DOI: 10.1016/0045-7825(79)90034-3.

Hayase T., Humphrey J. A. C., Greif R. A Consistently Formulated QUICK Scheme for Fast and Stable Convergence Using Finite-Volume Iterative Calculation Procedures. Journal of Computational Physics. 1992;98(1):108–118. DOI: 10.1016/0021-9991(92)90177-Z.

Бычин И. В. Тестирование магнитогидродинамического кода на задачах естественной конвекции и геодинамо. Успехи кибернетики. 2021;2(1):6-13. DOI: 10.51790/2712-9942-2021-2-1-1.

Downloads

Download data is not yet available.