Motion Stabilization of Bipedal Walking Robots in Virtual Environment Systems
PDF (Russian)

Keywords

bipedal walking robot
stabilization
zero moment point
feedback
sliding mode
virtual environment

How to Cite

1.
Strashnov E.V., Mironenko I.N. Motion Stabilization of Bipedal Walking Robots in Virtual Environment Systems // Russian Journal of Cybernetics. 2022. Vol. 3, № 4. P. 75-83. DOI: 10.51790/2712-9942-2022-3-4-09.

Abstract

the study is intended to develop methods and approaches for motion stabilization of bipedal walking robots in virtual environment systems. A virtual environment with virtual models is best suited for testing and refining robot control algorithms. This reduces the risk of the actual robot’s breakdown and facilitates making expert opinions on the robot’s applicability for critical operations. The proposed solutions use a controller with feedback from virtual sensors. The controller keeps the robot’s motion stable using the zero moment point criterion, and the inverted pendulum model. The sliding mode control is used. This approach does not require extensive calculations, solving nonlinear algebraic equations, or complex matrix operations by the controller. The proposed approach was proven with a virtual environment for a fire-extinguishing robot. The simulation ensures the balance of a bipedal walking robot as it moves.

https://doi.org/10.51790/2712-9942-2022-3-4-09
PDF (Russian)

References

Saeedvand S., Jafari M., Aghdasi H. S., Baltes J. A Comprehensive Survey on Humanoid Robot Development. The Knowledge Engineering Review. 2019;34:1–18. DOI: 10.1017/S0269888919000158.

Mikolajczyk T. and others. Recent Advances in Bipedal Walking Robots: Review of Gait, Drive, Sensors and Control Systems. Sensors. 2022;22(12):1–31. DOI: 10.3390/s22124440.

Юревич Е. И. Основы робототехники: учеб. пособие, 4-е изд., перераб. и доп. СПб: БХВПетербург; 2017. 304 с.

Kajita S., Hirukawa H., Harada K., Yokoi K. Introduction to Humanoid Robotics. ser. Springer Tracts in Advanced Robotics. Springer Berlin Heidelberg; 2014. Vol. 101.

Taesin Ha, Chong-Ho Choi. An Effective Trajectory Generation Method for Bipedal Walking. Robotics and Autonomous Systems. 2007;55:795–810. DOI: 10.1016/j.robot.2007.06.001.

Al-Shuka Hayder F. N., Allmendinger F., Corves B. and Wen-Hong Zhu. Modeling, Stability and Walking Pattern Generators of Biped Robots: a Review. Robotica. 2014;32:907–934. DOI: 10.1017/S0263574713001124.

Kajita S. and others. Biped Walking Pattern Generation Based on Spatially Quantized Dynamics. IEEERAS 17th International Conference on Humanoid Robotics. Birmingham, UK. 2017;599–605. DOI: 10.1109/HUMANOIDS.2017.8246933.

Хусаинов Р. Р., Климчик А. А., Магид Е. А. Метод управления движением двуногого шагающего робота по произвольной траектории. Мехатроника, автоматизация, управление. 2018;19(10):633– 641. DOI: 10.17587/mau.19.633-641.

Nishiwaki K., Kagami S. Strategies for Adjusting the ZMP Reference Trajectory for Maintaining Balance in Humanoid Walking. 2010 IEEE International Conference on Robotics and Automation. 2010;4230– 4236. DOI: 10.1109/ROBOT.2010.5510002.

Kajita S., Morisawa M., Miura K., Nakaoka S., Harada K., Kaneko K., Kanehiro F., Yokoi K. Biped Walking Stabilization Based on Linear Inverted Pendulum Tracking. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. October 18-22, 2010, Taipei, Taiwan. 4489–4496. DOI: 10.1109/IROS.2010.5651082.

Sugihara T. Standing Stabilizability and Stepping Maneuver in Planar Bipedalism Based on the Best COM-ZMP Regulator. 2009 IEEE International Conference on Robotics and Automation. 2009;1966– 1971. DOI: 10.1109/ROBOT.2009.5152284.

Campos-Macias L., Carbajal-Espinosa O., Lokianov A., Bayro-Corrochano E. Stabilization Method for Dynamic Gait in Bipedal Walking Robots. IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids). Cancun, Mexico. 2016;1276–1281. DOI: 10.1109/HUMANOIDS.2016.7803434.

Vukobratovic M. Zero-Moment Point — Thirty-Five Years of Its Life. International Journal of Humanoid Robotics. 2004;1:157–173. DOI: 10.1142/S0219843604000083.

Михайлюк М. В., Мальцев А. В., Тимохин П. Ю., Страшнов Е. В., Крючков Б. И., Усов В. М. Система виртуального окружения Virsim для имитационно-тренажерных комплексов подготовки космонавтов. Пилотируемые полеты в космос. 2020;37(4):72–95. DOI: 10.34131/MSF.20.4.72-95.

Сорокин Г. А. Фильтры нижних частот. Вестник ЮУрГУ. Серия «Компьютерные технологии, управление, радиоэлектроника». 2015;15(1):100–107.

Sugihara T. Solvability-Unconcerned Inverse Kinematics Based on Levenberg-Marquardt Method with Robust Damping. 9th IEEE-RAS International Conference on Humanoid Robots. Paris, France. 2009;555– 560. DOI: 10.1109/ICHR.2009.5379515.

Страшнов Е. В. Инверсная кинематика для управления движением двуногих шагающих роботов в системах виртуального окружения. Труды НИИСИ РАН. 2021;11(3):41–47. DOI: 10.25682/NIISI.2021.3.0009.

Страшнов Е. В., Финагин Л. А. Моделирование полуавтоматического режима управления движением двуногих шагающих роботов в системах виртуального окружения. Автоматизация и моделирование в проектировании и управлении. 2022;3(17):57–67. DOI: 10.30987/2658-6436-2022-3-57-67.

Kajita S., Kanehiro F., Kaneko K., Fujiwara K., Harada K., Yokoi K., Hirukawa H. Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point. 2003 IEEE International Conference on Robotics and Automation. 2003;1620–1626. DOI: 10.1109/ROBOT.2003.1241826.

Shtessel Y., Edwards C., Fridman L., Levant A. Sliding Mode Control and Observation. Birkhauser; 2013.

Михайлюк М. В., Омельченко Д. В., Страшнов Е. В. Командный и супервизорный режимы управления виртуальными роботами. Вестник кибернетики. 2016;4:67–72.

Downloads

Download data is not yet available.