Deep Learning for Solving Partial Differential Equations
PDF (Russian)

Keywords

deep learning
machine learning
partial differential equations
DGM
DRM

How to Cite

1.
Epifanov A.A. Deep Learning for Solving Partial Differential Equations // Russian Journal of Cybernetics. 2020. Vol. 1, № 4. P. 22-28. DOI: 10.51790/2712-9942-2020-1-4-3.

Abstract

Recently deep learning networks made huge progress due to the advances in highperformance computing technologies. This study covers a range of approaches to solving partial differential equations with deep learning. An example of solving the Poisson equation in a twodimensional domain using the Galerkin method with deep neural networks is presented.

https://doi.org/10.51790/2712-9942-2020-1-4-3
PDF (Russian)

References

Бетелин В. Б., Галкин В. А. Универсальные вычислительные алгоритмы и их обоснование для приближенного решения дифференциальных уравнений. Доклады Академии наук. 2019;488(4):351–357. DOI: https://doi.org/10.31857/S0869-56524884351-357.

Колмогоров А. Н. О представлении непрерывных функций нескольких переменных в виде суперпозиций непрерывных функций одного переменного и сложения. Доклады Академии наук СССР. 1957;114(5):953–956.

Hecht-Nielsen R. Kolmogorov's Mapping Neural Network Existence Theorem. Proceedings of the International Conference on Neural Networks. NewYork: IEEE Press. 1987. III:11-14.

Funahashi K. On the Approximate Realization of Continuous Mappings by Neural Networks. Neural Networks. 1989;2(3):183-192.

Cybenko G. Approximation by Superposition of a Sigmoidal Function. Mathematics of Control, Signals, and Systems. 1989;2:303-314.

Sirignano J., Spiliopoulos K. DGM: A Deep Learning Algorithm for Solving Partial Differential Equations. Available at: arXiv:1708.07469.

Weinan E, Bing Yu. The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems. Available at: https://arxiv.org/pdf/1710.00211.pdf.

Wang Z., Zhang Z. A Mesh-Free Method for Interface Problems Using the Deep Learning Approach. Available at: https://arxiv.org/pdf/1901.00618.pdf.

Chen J., Viquerat J., Hachem E. U-net Architectures for Fast Prediction of Incompressible Laminar Flows. Available at: https://arxiv.org/pdf/1910.13532.pdf.

Liu Y., Dinh N. Sato Y., Niceno B. Data-Driven Modeling for Boiling Heat Transfer: Using Deep Neural Networks and High-Fidelity Simulation Results. Available at: https://arxiv.org/pdf/1808.01859.pdf.

Tompson J., Schlachter K., Sprechmann P., Perlin K. Accelerating Eulerian Fluid Simulation With Convolutional Networks. Available at: https://arxiv.org/pdf/1607.03597.pdf.

Miyanawala T. P., Jaiman R. K. An Efficient Deep Learning Technique for the Navier-Stokes Equations: Application to Unsteady Wake Flow Dynamics. Available at: https://arxiv.org/pdf/1710.09099.pdf.

Downloads

Download data is not yet available.