Maximum Entropy Method for Time-Series Data Obtained from Real-Time Evolution of Time Dependent Density Functional Theory
PDF

Keywords

spectrum analysis
time series data
maximum entropy method
time-evolution
time-dependent density functional theory

How to Cite

1.
Zempo Y., Kano S.S. Maximum Entropy Method for Time-Series Data Obtained from Real-Time Evolution of Time Dependent Density Functional Theory // Russian Journal of Cybernetics. 2021. Vol. 2, № 2. P. 64-73. DOI: 10.51790/2712-9942-2021-2-2-5.

Abstract

The maximum entropy method is one of the key techniques for spectral analysis. The main feature is to describe spectra in low frequency with short timeseries data. We adopted the maximum entropy method to analyze the spectrum from the dipole moment obtained by the timedependent density functional theory calculation in real time, which is intensively studied and applied to computing optical properties. In the maximum entropy method analysis, we proposed that we use the concatenated data set made from severaltimes repeated raw data together with the phase. We have applied this technique to spectral analysis of the dynamic dipole moment obtained from timedependent density functional theory dipole moment of several molecules such as oligofluorene with n = 8. As a result, the higher resolution can be obtained without any peak shift due to the phase jump. The peak position is in good agreement to that of FT with just raw data. This paper presents the efficiency and characteristic features of this technique.

 
https://doi.org/10.51790/2712-9942-2021-2-2-5
PDF

References

Sakurai T. Eleven-Year Solar Cycle Periodicity in Sky Brightness Observed at Norikura,Japan. Earth Planets Space. 2002;54(2):153-157. DOI: 10.1186/BF03351715.

Chelikowsky J. R., Troullier N., Wu K., Saad Y. Higher-Order Finite-Difference Pseudopotential Method: an Application to Diatomic Molecules. Physical Review B. 1994;50(16):11355-11364. DOI: 10.1103/PhysRevB.50.11355.

Yabana K., Bertisch G. F. Time-Dependent Local-Density Approximation in Real Time. Physical Review B. 1996;54(7):4484-4487. DOI: 10.1103/PhysRevB.54.4484.

Burg J. P. A New Analysis Technique for Time Series Data. NATO Advanced Study Institute on Signal Processing. 1968;15-0. Enschede, Netherlands.

Toogoshi M., Kato M., Kano S. S., Zempo Y. Optical Spectrum Analysis of Real-Time TDDFT Using the Maximum Entropy Method. Journal of Physics: Conference Series. 2014;510:012027. DOI: 10.1088/1742-6596/510/1/012027.

Toogoshi M., Kano S., Zempo Y. Improved Maximum Entropy Method applied to Real-Time Time-Dependent Density Functional Theory. Journal of Physics: Conference Series. 2017;905:012006. DOI: 10.1088/1742-6596/905/1/012006.

Runge E., Gross E. K. U. Density-Functional Theory for Time-Dependent Systems. Physical Review Letters. 1984;52(12):997-1000. DOI: 10.1103/PhysRevLett.52.997.

Shannon C. E. A Mathematical Theory of Communication. The Bell System Technical Journal. 1948;27(3):379-423. DOI: 10.1002/j.1538-7305.1948.tb01338.x.

Shannon C. E. A Mathematical Theory of Communication. The Bell System Technical Journal. 1948;27(4):623-656. DOI: 10.1002/j.1538-7305.1948.tb00917.x.

Jaynes E. T. Information Theory and Statistical Mechanics. Physical Review. 1957:106(4);620-630. DOI: 10.1103/PhysRev.106.620.

Jaynes E. T. On the Rationale of Maximum-Entropy Methods. Proceedings of the IEEE. 1982;70(9):939-952. DOI: 10.1109/PROC.1982.12425.

Haykin S., Kesler S. Prediction-Error Filtering and Maximum-Entropy Spectral Estimation. Haykin S. (eds) Nonlinear Methods of Spectral Analysis. Topics in Applied Physics. 1979;34:9-72. Springer, Berlin, Heidelberg. DOI: 10.1007/3-540-12386-5_9.

Kauppinen J. K., Maffat D. F., Hollberg M. R., Mantch H. A. New Line-Narrowing Procedure Based on Fourier Self-Deconvolution, Maximum Entropy, and Linear Prediction. Applied Spectroscopy. 1991;45(3):411-416. DOI: 10.1366/0003702914337155.

Zempo Y., Akino., Ishida M., Ishitobi M., Kurita Y. Optical Properties in Conjugated Polymers. Journal of Physics: Condensed Matter. 2008;20(6):064231. DOI: 10.1088/0953-8984/20/6/064231.

Hummer K., Puschnig P., Sagmeister S., Ambrosch-Draxl C. Ab-Inito Study on the Excitation Binding Energies in Organic Semiconductors. Modern Physics Letters B. 2006;20(6):261-280. DOI: 10.1142/S0217984906010603.

Downloads

Download data is not yet available.