Testing the Magnetohydrodynamic Analysis Software with Natural Convection and Geodynamo Problems
PDF (Russian)

Keywords

natural convection
hydromagnetic dynamo
spherical geometry

How to Cite

1.
Bychin I.V. Testing the Magnetohydrodynamic Analysis Software with Natural Convection and Geodynamo Problems // Russian Journal of Cybernetics. 2021. Vol. 2, № 1. P. 6-13. DOI: 10.51790/2712-9942-2021-2-1-1.

Abstract

Using the control volume method we developed the software for the numerical solution of viscous incompressible fluid resistive magnetohydrodynamics problems on structured staggered meshes in spherical coordinates. The constrained transport algorithm and the QUICK method with delayed correction for the approximation of the convective terms were used for the discretization of the magnetic field induction equation. The SIMPLER algorithm was applied to solving the hydrodynamic equations. We developed software for modeling natural convection and the hydromagnetic dynamo in a rotating sphere or spherical shell. We proposed an algorithm for the numerical solution of the geodynamo problem with vacuum boundary conditions. The results of solving natural convection and geodynamo benchmark problems with vacuum boundary conditions are presented; they demonstrate a fairly accurate agreement with the reference calculations. The software supports CUDA-enabled accelerators and uses a set of extensions to the Fortran programming language.

https://doi.org/10.51790/2712-9942-2021-2-1-1
PDF (Russian)

References

Marti P., Schaeffer N., Hollerbach R., Cébron D., Nore C., Luddens F., Guermond J.-L., Aubert J., Takehiro S., Sasaki Y., Hayashi Y.-Y., Simitev R., Busse F., Vantieghem S., Jackson A. Full Sphere Hydrodynamic and Dynamo Benchmarks. Geophysical Journal International. 2014;197(1):119–134. DOI: 10.1093/gji/ggt518.

Christensen U. R., Aubert J., Cardin P., Dormy E., Gibbons S., Glatzmaier G. A., Grote E., Honkura Y., Jones C., Kono M., Matsushima M., Sakuraba A., Takahashi F., Tilgner A., Wicht J., Zhang K. A Numerical Dynamo Benchmark. Physics of the Earth and Planetary Interiors. 2001;128(1–4):25–34. DOI: 10.1016/S0031-9201(01)00275-8.

Jackson A., Sheyko A., Marti P., Tilgner A., Cébron D., Vantieghem S., Simitev R., Busse F., Zhan X., Schubert G., Takehiro S., Sasaki Y., Hayashi Y.-Y., Ribeiro A., Nore C., Guermond J.-L. A Spherical Shell Numerical Dynamo Benchmark with Pseudo-Vacuum Magnetic Boundary Conditions. Geophysical Journal International. 2014;196(2):712–723. DOI: 10.1093/gji/ggt425.

Matsui H. et al. Performance Benchmarks for a Next Generation Numerical Dynamo Model. Geochem. Geophys. Geosyst. 2016;17(5):1586–1607. DOI: 10.1002/2015GC006159.

Glatzmaier G. A., Roberts P. H. A Three-Dimensional Self-Consistent Computer Simulation of a Geomagnetic Field Reversal. Nature. 1995;377:203–209. DOI: 10.1038/377203a0.

Olson P. L., Glatzmaier G. A., Coe R. S. Complex Polarity Reversals in a Geodynamo Model. Earth Planet. Sci. Lett. 2011;304:168–179. DOI: 10.1016/j.epsl.2011.01.031.

Olson P., Driscoll P., Amit H. Dipole Collapse and Reversal Precursors in a Numerical Dynamo. Phys. Earth. Planet. Inter. 2009;173:121–140. DOI: 10.1016/j.pepi.2008.11.010.

Vantieghem S., Sheyko A., Jackson A. Applications of a Finite-Volume Algorithm for Incompressible MHD Problems. Geophysical Journal International. 2016;204(2):1376–1395. DOI: 10.1093/gji/ggv527.

Harder H., Hansen U. A Finite-Volume Solution Method for Thermal Convection and Dynamo Problems in Spherical Shells. Geophysical Journal International. 2005;161(2):522–532. DOI: 10.1111/j.1365-246X.2005.02560.x.

Jones C. A. Convection-Driven Geodynamo Models. Phil. Trans. R. Soc. Lond. A. 2000;358:873–897. DOI: 10.1098/rsta.2000.0565.

Бычин И. В., Гореликов А. В., Ряховский А. В. Численное решение начальнокраевой задачи с вакуумными граничными условиями для уравнения индукции магнитного поля в шаре. Вестн Том. гос. ун-та. Математика и механика. 2020;64:15–30. DOI: 10.17223/19988621/64/2.

Бычин И. В., Гореликов А. В., Ряховский А. В. Исследование установившихся режимов естественной конвекции во вращающемся сферическом слое. Вопросы атомной науки и техники. Сер. Математическое моделирование физических процессов. 2016;1:48–59.

Куликовский А. Г., Погорелов Н. В., Семенов А. Ю. Математические вопросы численного решения гиперболических систем уравнений. М.: ФИЗМАТЛИТ; 2001. 608 с.

Iskakov A. B., Descombes S., Dormy E. An Integro-Differential Formulation for Magnetic Induction in Bounded Domains: Boundary Element-Finite Volume Method. J. Comput. Phys. 2004:197(2):540–554. DOI: 10.1016/j.jcp.2003.12.008.

Downloads

Download data is not yet available.